organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ying Liang, Hong-Wu He,* Ya-Zhou Wang and Ting Chen

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: he1208@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.052 wR factor = 0.131 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dimethyl [(3,7-dichloroquinolin-8-ylcarbonyloxy)(phenyl)methyl]phosphonate

In the title compound, $C_{19}H_{16}Cl_2NO_5P$, the P atom is in a distorted tetrahedral configuration, and the carboxylate plane is oriented almost perpendicular to the quinoline ring system. In the crystal structure, molecules are linked by intermolecular C-H···O hydrogen bonds and weak π - π stacking interactions.

Comment

Quinoline as a versatile heterocyclic compound has attracted increasing attention because of its high germicidal and pharmacological properties (Adnan *et al.*, 2003). Organic phosphorus compounds play an important role in pesticide science as part of their significant biological properties. The title compound, (I), has been prepared as a part our work on the synthesis of aryl/heterocyclic 1-oxyalkylphosphonic acid derivatives with good biological activities (He *et al.*, 2005), and we report its structure here (Fig. 1 and Table 1).

The bond lengths observed in the quinoline system of (I) do not differ significantly from those in free quinoline (Shetty & Fernando, 1970). The bond angles about atom P1 suggest that it adopts a distorted tetrahedral configuration, as observed previously in a similar compound (Liang & He, 2006). The C10/O1/O2 carboxylate plane is oriented almost perpendicular to the quinoline ring system [dihedral angle 85.6 (3)°].

In the crystal structure, intermolecular $C-H\cdots O$ hydrogen-bonding interactions stabilize the structure (Table 2). In addition, short intermolecular distances between the centroids of the C1–C4/C9/N1 ring (*Cg*1) and the C4–C9 ring (*Cg*2) of an adjacent molecule indicate the existence of π - π stacking interactions (Janiak, 2000) [*Cg*1···*Cg*2ⁱ = 3.7923 (15) Å; symmetry code: (i) 1 – *x*, 1 – *y*, 1 – *z*]. These form inversion-related dimers, which are further stabilized by weak C–H···O intermolecular hydrogen bonds.

Experimental

3,7-Dichloroquinoline-8-carbonyl chloride, (II) (Coutrot, 1986), and *O*,*O*-dimethyl 1-hydroxy-phenylmethylphosphonate, (III) (Boullet & Foucaud, 1982), were prepared according to literature procedures.

© 2006 International Union of Crystallography

All rights reserved

Received 15 May 2006

Accepted 23 May 2006

Compound (II) (0.022 mol) in chloroform (10 ml) was added dropwise at 275–277 K to a stirred solution of (III) (0.02 mol) and triethylamine (0.028 mol) in chloroform (25 ml) (He *et al.*, 2005). The mixture was stirred at 283–288 K for 3–5 h, washed with 0.5% hydrochloric acid solution, followed by sodium hydrogen carbonate, dried and evaporated. The residue was purified by chromatography (silica gel with 20% acetone in petroleum ether). Recrystallization from dichloromethane over a period of one week gave colorless block-shaped crystals of (I).

Z = 8

 $R_{\rm int} = 0.047$

 $\theta_{\rm max} = 26.0^\circ$

 $D_x = 1.460 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.44 \text{ mm}^{-1}$ T = 292 (2) K Block, colorless 0.20 \times 0.20 mm

3924 independent reflections

2968 reflections with $I > 2\sigma(I)$

Crystal data

C ₁₉ H ₁₆ Cl ₂ NO ₅ P
$M_r = 440.20$
Orthorhombic, Pbca
a = 11.4895 (8) Å
b = 15.7158 (11) Å
c = 22.1792 (16) Å
V = 4004.8 (5) Å ³

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: none 20069 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 1.2945P]
$wR(F^2) = 0.131$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3924 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ \AA}^{-3}$
255 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.402 (4)	C7-C8	1.377 (4)
C4-C9	1.407 (4)	C8-C9	1.407 (3)
C4-C5	1.415 (4)		
O3-P1-O4	116.02 (12)	O3-P1-C11	114.28 (12)
O3-P1-O5	115.63 (11)	O4-P1-C11	101.98 (12)
O4-P1-O5	103.30 (11)	O5-P1-C11	103.86 (12)

Table	2
-------	---

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C1-H1···O3 ⁱ	0.93	2.52	3.309 (3)	143
C14−H14···O3 ⁱⁱ	0.93	2.43	3.302 (4)	157
$C3-H3\cdots O3^{iii}$	0.93	2.65	3.512 (2)	155
Symmetry codes:	(i) $x - \frac{1}{2}$	$-v + \frac{1}{2}, -z + 1$:	(ii) $x - \frac{1}{2}$, y	$-z + \frac{1}{2}$; (iii)

-x + 1, -y + 1, -z + 1.

All H atoms were refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C-H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, and C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ H atoms.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve

Figure 1

View of (I), showing the atom-labelling scheme, with 50% probability displacement ellipsoids.

Figure 2

The crystal structure of (I), showing the C–H $\cdot\cdot\cdot$ O hydrogen bonds (dashed lines).

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (No. 2003CB114400) and the National Natural Science Foundation of China (No. 20372023).

References

- Adnan, B., Hesham, F., Sherif, R. & Azza, B. (2003). Eur. J. Med. Chem. 38, 27–36.
- Boullet, F. T. & Foucaud, A. (1982). Synthesis, pp. 165-166.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). *SMART* (Version 5.059), *SAINT* (Version 6.01) and *SADABS* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Coutrot, P. (1986). Synthesis, pp. 661-664.

- He, H. W., Wang, T. & Yuan, J. L. (2005). J. Organomet. Chem. 690, 2608–2613.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Liang, Y. & H-W, He. (2006). Acta Cryst. E62, 0485-0486.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shetty, P. S. & Fernando, Q. (1970). J. Am. Chem. Soc. 92, 3964– 3969.